Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95.
نویسندگان
چکیده
NMDA receptors (NMDARs) play a crucial role in neuronal development, synaptic plasticity, and excitotoxicity; therefore, regulation of NMDAR function is important in both physiological and pathological conditions. Previous studies indicate that the NMDAR-mediated synaptic current decay rate increases during development because of a switch in receptor subunit composition, contributing to developmental changes in plasticity. To test whether NMDAR desensitization also changes during development, we recorded whole-cell NMDA-evoked currents in cultured rat hippocampal neurons. We found that glycine-independent desensitization of NMDARs decreases during development. This decrease was not dependent on a switch in subunit composition or differential receptor sensitivity to agonist-, Ca2+-, or Zn2+-induced increase in desensitization. Instead, several lines of evidence indicated that the developmental decrease in desensitization was tightly correlated with synaptic localization of the receptor, suggesting that association of NMDARs with proteins selectively expressed at synapses in mature neurons might account for developmental alterations in desensitization. Accordingly, we tested the role of interactions between PSD-95 (postsynaptic density-95) and NMDARs in regulating receptor desensitization. Overexpression of PSD-95 reduced NMDAR desensitization in immature neurons, whereas agents that interfere with synaptic targeting of PSD-95, or induce movement of NMDARs away from synapses and uncouple the receptor from PSD-95, increased NMDAR desensitization in mature neurons. We conclude that synaptic localization and association with PSD-95 increases stability of hippocampal neuronal NMDAR responses to sustained agonist exposure. Our results elucidate an additional mechanism for differentially regulating NMDAR function in neurons of different developmental stages or the response of subpopulations of NMDARs in a single neuron.
منابع مشابه
Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کاملA critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.
Abnormal function of NMDA receptor has been suggested to be correlated with the pathogenesis of Parkinson's disease (PD) as well as with the development of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. Here we show that NMDA receptor NR2 subunits display specific alterations of their subcellular distribution in striata from unilateral 6-hydroxydopamine-lesioned, L-DOPA-treated dyski...
متن کاملDifferential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development.
The development of glutamatergic synapses involves changes in the number and type of receptors present at the postsynaptic density. To elucidate molecular mechanisms underlying these changes, we combine in utero electroporation of constructs that alter the molecular composition of developing synapses with dual whole-cell electrophysiology to examine synaptic transmission during two distinct dev...
متن کاملInteractions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor.
The calcium-dependent protease calpain cleaves the NMDA receptor 2 (NR2) subunit of the NMDA receptor both in vitro and in vivo and thus potentially modulates NMDA receptor function and turnover. We examined the ability of postsynaptic density-95 (PSD-95) protein to alter the calpain-mediated cleavage of NR2A and NR2B. Coexpression of PSD-95 with NMDA receptors in human embryonic kidney 293 cel...
متن کاملHeterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture.
To determine their roles in the assembly of glutamatergic postsynaptic sites, we studied the distributions of NMDA- and AMPA-type glutamate receptors; the NMDA receptor-interacting proteins alpha-actinin-2, PSD-95, and chapsyn; and the PSD-95-associated protein GKAP during the development of hippocampal neurons in culture. NMDA receptors first formed nonsynaptic proximal dendrite shaft clusters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 35 شماره
صفحات -
تاریخ انتشار 2003